How To: Create Applications for the Application Vault

7

How To: Create Applications for the Application
Vault

The Application Vault functionality allows for installing and configuring various web applications, such as
counters, guest books, forums, photo galleries, etc. The Administrator of Plesk can add web applications in the
form of application packages to the server enabling users deploy and configure the available applications on their
domains (as well as subdomains).

In order for an application to be suitable for installation in Plesk it must meet certain requirements. For example, it
must have a specific directory structure, it must follow a prescribed order of passing parameters between specific
forms, etc. This document describes the different aspects of creating such an application.

1. Directory structure
Selected application should contain the following subdirectories:

» scripts/ -directory where the installation, configuration and uninstall scripts are stored,;

« forms/ - directory where the main configuration and installation forms for configuring
applications within virtual hosts are stored;

» apps/ -tarballs which will be extracted into virtual host;

 uninstall/ - subdirectory for the script, which deletes the application from repository (for non-
rpm packages);

» docs/ - online documentation directory for the end-users;

« info/ - directory with application description xml-file. i nfo.xm contains the system
requirements and disk space usage. The main variables are also described there.

The sample of the file structure is given below:

/ supercounter-1.2-5.6

/scripts
prei nstall
posti nstal l

preuni nst al |
post uni nst al |
pr eupgr ade
post upgr ade
[forns
installer-form 1. php
i nstal |l er-handl er-1. php

o SWsoft

How To: Create Applications for the Application Vault
installer-form 2. php
i nstal |l er-handl er-2. php
installer-form 3. php
i nstal |l er-handl er-3. php
[apps
cgi-bin-files.tar
htt pdocs-files.tar
/uni nst al |
uni nst al |
/ docs
i ndex. de. htm
i ndex. en. htm
/info
i nfo.xm

2. Application directories content

2.1 The scripts/ directory
This directory contains following scripts:

« postinstall - is executed after tarballs’ extraction. It is used for applying the necessary
changes to the configuration to make the application fully functional after installing into the virtual
host directory. The script can generate not only the configuration files, but also script files. It
should apply necessary changes to dir and file attributes, rename directories if necessary.
. ht access files should also be created with this script. If the script returns non-zero value, the
warning will be displayed, but the application will be installed. In case of the problems the script
should output the warning to st dout and exit with 1;

 reconfigure - is executed after the new parameters were given by the user. It adds required
changes to the script configuration.

Parameters are passed to st di n as a set of strings in the following format:
< paraneter name >=< paraneter value <
We strongly recommend that the posti nstal | script backs up the original config if it exists. The

functions described below are used in our posti nst al | scripts.

#! / bi n/ sh
gallery postinstall script

required paraneters: app_path
*Put nesessary variabl es here

o SWsoft

vhost _path - full
domai n_nane -

path to vhost
nane of domain

H*H o HHH

ss|l _target _directory - true, if

read_par anet er s()
var="cat | awk '

eqpos=i ndex($0, "=
if (eqpos>1)

")

there are al so sone standard paraneters,

How To: Create Applications for the Application Vault

t hat
root directory

nmust be specifi ed:

install _prefix - path of application inside vhost directory

application is in httpsdocs

var=substr ($0, 1, egpos-1);
val =substr ($0, eqpos+1);
tnp="[cc] "
t np2="cccc";
gsub(tnp, tnp2, val);
t np2="ccc";
gsub("", tnp2,val);
print var "=" val "";
eval $var
check_st andar d_par anet er s()
if ["X$vhost_path" = "X"]; then

echo "postinstall:
application”
exit 1
fi
if ["X$dommi n_nane" =
echo "postinstall:
application”
exit 1
fi
if ["X$install_prefix" =
echo "postinstall:
application”
exit 1
fi
if [
echo "postinstall:
for application”
exit 1
fi

1

par se_st andar d_par anet er s()

"y

"y

"X$ssl _target _directory" =

no vhost _path paraneter specified for

]; then
no donmai n_nane paraneter specified for

]1; then
no install_prefix parameter specified for

"X"]; then
no ssl_target _directory paranmeter specified

"Xtrue"]; then

if ["X$ssl_target _directory" =

prot o="htt ps"

docunent s_di rect ory="htt psdocs"
el se

don't forget to fix it

proto="http"

<o SWsoft

How To: Create Applications for the Application Vault
docunent s_di rect ory="htt pdocs"
fi

create_dirs()

if [! -d "$app_path/tnp"] ; then
nkdi r "$app_path/t np"
f

backup_ori gi nal _config()

if [-f "$app_config"] ; then
if [! -f "$app_config.orig"] ; then
cp $app_config $gallery config.orig
f
f

2.2 The forms/ directory

This directory contains forms in PHP or HTML format which are being used for receiving the script
configuration parameters.

* installer-handl er-<step nunber>. php - input form for the data processing during the
application installation;

* installer-form<step nunber>. php - input form for application configuration values;

* reconfigure-handl er-<step nunber>. php - reconfiguration handler for the data;
processing during the upgrade;

* reconfigure-form<step nunber>. php - reconfiguration form.

The absence of both installer files means that only http/https part of the virtual host and subdirectory of
the application are being requested when the application is selected for the installation.

The absence of the first step reconfiguration files means that there is no possibility to upgrade the
package.

NOTE

Application upgrade is not supported in current Plesk version.

<o SWsoft

How To: Create Applications for the Application Vault

2.3 The apps/ directory

* httpdocs-files.tar
e cgi-bin-files.tar

Both files are optional. If there is none of them, then the application must be installed by posti nst al |
script.

2.4 The uninstall/ directory.

For the non-RPM packages only! It contains the uninstall script which should be equivalent to pr eun
scripts in RPM packages.

2.5 The docs/ directory

This directory contains the documentation for the web-application.

2.6 The info/ directory

This directory contains the file i nf o. xm which describes the basic application information like disc
usage, application version, application size, used variables, necessary for the application to work within
a virtual host.

The structure of the i nf 0. xm file is following:

<WEBAPP nane="Appl i cati on nane" version="1.1" rel ease="1">
<VERS|I ONH STORY>

<VER val ue="1.1-1"/>
</ VERSI| ONHI STORY>

<ATTRI BUTES>
<DESCRI PTI ON> Application description </ DESCR PTI ON>
<LI CENSE accept _requi red="no"> GPL </LICENSE> #Li cence type, GPL, Freeware, etc.
<ATTRI BUTE nane="di sc_space" val ue="111222" /> # di sc usage in bytes

</ ATTRI BUTES>

#The virtual host requirements for the package work
<REQUI REMENTS>
<APACHE_VHCST nane="PHP" val ue="on" />
<APACHE_VHCST nane="SS|" val ue="on" />
</ REQUI REMENTS>

</ WEBAPP>

<o SWsoft

How To: Create Applications for the Application Vault

3. Functions

Functions used in form and handler scripts:

sapp_create database($db_name, $db_type, $user name, $user passwd); - checks the database
limits, database name existence and creates database. Returns true in case of success. $db_type can
be mysql, postgresql, mssql;

sapp_set_install_prefix($prefix); - checks if the folder name is already being used by another application
or already exists. If the folder exists then the function returns false;

void sapp_set_param($name, $value); - adds the parameter and it's name to database;

string sapp_get_param($name); - access to web_params(); function;

void sapp_set_errormsg($msg); - returns the error text to the form or handler script;
bool sapp_is_ssl_enabled(); - checks if SSL is enabled;

sapp_get_locale(); - returns current locale, like en, jp, de
sapp_get_domain_name(); - returns the domain name,;

check_sys_login($login); - checks whether the login name is valid;
check_sys passwd($login, $passwd);- validates the password and login name, including the case when
the password contains the login name;

check_pg_login($login); - check, if postgresgl login name is valid;
check_pg_passwd($login, $passwd); - check if postgresgl password is valid;
check_mailname($mail_name); - check if mailname is valid;
check_mail_passwd($login, $passwd); - check if mailname password is valid;
check_domain($dom_name); - checks if domain name is valid;
check_url($url); - checks if URL is valid;

check_shortUrl($url); - checks that URL is like http://domain.com (i.e. only protocol and hostname
without slash at the end);

check_dbName($db); - checks if database name is valid;
check_dbUserName($usr); - checks if database user name is valid;
check_phone($phone); - checks if phone number is valid;
check_email($email); - check if e-mail address is valid;

check_ip($ip); - checks if IP address is valid;

check_mask($mask); - checks if network mask is valid;
check_filename($filename); - checks if filename is valid;

check_int($num); - checks if argument is an integer number.

o SWsoft

How To: Create Applications for the Application Vault

4. Creating the Application

To create an application for uploading through Plesk control panel you should build an RPM from the
package.

First of all you should find out the list of necessary configuration variables. They should be described in
i nfo. xm file along with the build number, version number and application disk usage.

NOTE

We strongly recommend that you use the patch syntax to apply the necessary changes to the
applications like correcting the paths, etc.

You can find more information at the official RPM site: http://www.rpm.org/RPM-HOWTO/build.html

4.1 The spec file

The spec file should include the patch info, correct build number, version number and program name.
The patches must be also listed there. The directory structure for the applications is described above.

The following variables are required in the spec file:

Summary: # Short description

Name: %name

Version: #version number

Release: #release number

Copyright: # License type, for example GPL, Freeware
Vendor: %vendor

Group: Applications WWW

Packager: SWsoft Inc <info@plesk.com> # Set your or your company name there
BuildRoot: %prodbui,ldroot/../cgitory

Prefix: %product_root_d/var/cgitory

Requires: php # set any

Provides: Plesk-application-vault

If no comment is given for the variable, then the value should be exactly the same as given.
The application should have the attributes like below, it must be owned by user root:

Yattr (-, root,root)%roduct_root_d/var/cgitory/ %anesrc-%ersion-% el ease

o SWsoft

How To: Create Applications for the Application Vault

4.2. Scripts

You should write the necessary forms and handlers using the functions described in section 3 to
complete the list of application configuration variables.

4.3 Building the RPM package

Make sure that all the necessary files and subdirectories are all in place. Create tarballs for ht t pdocs
and cgi - bi n.

Write a Makef i | e, including all the necessary correction patches.

Copy the spec file to / usr/ src/ r edhat / SPECS

NOTE

You must be logged in as r oot to build the RPM package.

Execute the following command:

rpnbuild --bb /usr/src/redhat/ SPECS/ APPLI CATI ON_NAME. spec

Here APPLI CATI ON_NAME. spec should be replaced with the name of your application spec file
described in the section 4.1.

Once the process of building the RPM package is complete you will find the package in the following
directory: / usr/ src/ r edhat / RPMS/ noar ch.

5. Uploading the Application

Log on the Plesk control panel as adm n. In section Server -> Application Vault click the button
[Browse], then select the application rpm and click [Send File].

o SWsoft

